lesson Plan

Name of the Faculty Varunendra Kumar Singh

Discipline:Instrumentation & Control

Semester:3rd

Subject: Control System Engineering

Lesson Plan Duration : 15 weeks(from Aug to Dec 2024)

Work Load (lecture/practical)per week (in hours) : Lectures- 03, practical- 04

С		Theory		Practicals
	Lecture	Topic (inculding	Practic	Торіс
	Day	assignment/test)	al	
1.0+	1.ct		hour	
	151		1	
		Basic elements of control system.		То
	2nd		2	study/design
		Open loop control system		open loop
	3rd	3rd Closed loop control system.	3	control system
			4	
2nd	4th			
		Manually controlled closed loop systems	5	То
	5+b			study/design
	501		6	closed loop
		Automatic controlled closed loop systems		control system
	011	Basic elements of a servo mechanism	7	,
3rd	7th			10
	7 (11	Linear systems, non-linear systems	9	demonstrate
		Mathematical modelling of physical systems () Machanical		the synchro
	oth	Mathematical modelling of physical systems: a) Mechanical	10	characteristic
	Qth			and use a
	501	Mathematical modelling of physical systems: b)Electrical syste	11	synchro pair as
4th	10th			AFFOR ABIACTOR
		Introduction to Laplace transform.	13	
	11th			Filo chocking
		Revision	14	The checking
	12th		16	
		Transfer function.	10	
5th	13th		17	the effect the
6th		Block diagram of closed loop system	17	damping
	14th	Plack diagram reduction techniques. Problems on black diagra	18	factor on the
	15th	Block diagram reduction techniques, Problems on block diagra		frequency
	1500		19	response of
	1.0+1-	Signal flow graph, Mason's formula.	20	second order
	16th	Standard test signals	21	stability of
	17th	-	22	, polynomial
		Time response of first order system subjected to step and imp	22	using Routh
	18th		23	array criterion
				using

		Introduction to second order system (Over damped).	24	Scilab/Matlab
7th	19th	Introduction to second order system (critically damped).	25	To plot the root locus of a
	20th	Introduction to second order system (under damped systems)	26	given system
	21st		27	using
		Time domain specifications (Delay time)	28	
8th	22nd	Time domain specifications (rise time)	29	To draw a
	23rd		30	bode plot problems
	2/1th	Time domain specifications (peak time)	21	using
	2401		31	Scilab/Matlab
	051	Time domain specifications (peak overshoot)	32	To find goin
9th	25th	Time domain specifications (settling time)	33	margin and
	26th	Time domain specifications (steady state error)	34	phase margin with crossover
	27th		35	frequency of a
		Copy Checking	36	system using
10th	28th	Routh Array Criterion	37	To study Non
	29th	Problems of Routh Array	38	behaviour of
	30th	Revision	39	relay
11th	31st	Introduction to Bode Plot	41	
	32nd	Introduction to behaviour of non-linear control system	42	Feedback from students
	33rd		43	
4.0.1	2.41	Principle of superposition and homogeneity	44	
12th	34th	Different types of non-linearites : Saturation	45	
	35th	Different types of non-linearites : Backlash	46	File checking
	36th	Class Test	47	
13th	37th	Different types of non-linearites : Hystersis	48 49	
	38th	Different types of non-linearites : Dead Zone	50	Viva voice
	39th	Different types of non-linearites : Relay	51	
	4011		52	
14th	40th	Different types of non-linearites : Friction	53	
	41st	Different types of non-linearites : Limit Cycle	54	Viva voice
	42nd	Different types of non-linearites : Jump Resonance	55 56	
15tł	43rd	Different types of non-linearites : Jump phenomenon	57	
	44th	Difference between linear and non-linear control system	58	Viva voice
	45th	Revision	59	

1	1	60	
I			