

5.3 COMPUTER PROGRAMMING USING PYTHON

L T P

3 - 6

RATIONALE

This course introduces to the students the Python language. Upon completion of this course, the student will be able

to write non trivial Python programs dealing with a wide variety of subject matter domains.

Topics include language components, the IDLE/IDE environment, control flow constructs, strings, I/O, collections,

classes, modules, and regular expressions

LEARNING OUTCOMES

After undergoing the course, the students will be able to:

 Execute Python code in a variety of environments

 Use correct Python syntax in Python programs

 Use the correct Python control flow construct

 Write Python programs using various collection data types

 Write home grown Python functions

 Use many of the standard Python modules such as os, sys, math, and time

 Trap various errors via the Python Exception Handling model

 Use the IO model in Python to read and write disk files

 Create their own classes and use existing Python classes. Understand and use the Object Oriented paradigm

in Python programs

 Use the Python Regular Expression capabilities for data verification

DETAILED CONTENTS

1. Introduction (03 Periods)

 Brief History of Python

 Python Versions

 Installing Python

 Environment Variables

 Executing Python from the Command Line

 IDLE

 Editing Python Files

 Python Documentation

 Getting Help

 Dynamic Types

 Python Reserved Words

 Naming Conventions

2. Basic Python Syntax (03 Periods)

 Basic Syntax

 Comments

 String Values

 String Methods

 The format Method

 String Operators
 Numeric Data Types

 Conversion Functions

 Simple Output

 Simple Input

 The % Method

 The print Function

3. Language Components (04 Periods)

 Indenting Requirements

 The if Statement

 Relational and Logical Operators

 Bit Wise Operators

 The while Loop

 break and continue

 The for Loop

4. Collections (09 Periods)

 Introduction

 Lists

 Tuples

 Sets

 Dictionaries

 Sorting Dictionaries

 Copying Collections

 Summary

5. Functions (06 Periods)

 Introduction

 Defining Your Own Functions

 Parameters

 Function Documentation

 Keyword and Optional Parameters

 Passing Collections to a Function

 Variable Number of Arguments

 Scope

 Functions - "First Class Citizens"

 Passing Functions to a Function

 map

 filter

 Mapping Functions in a Dictionary

 Lambda

 Inner Functions

 Closures

6. Modules (03 Periods)

 Modules

 Standard Modules - sys

 Standard Modules - math

 Standard Modules - time

 The dir Function

7. Exceptions (05 Periods)

 Errors

 Runtime Errors

 The Exception Model

 Exception Hierarchy

 Handling Multiple Exceptions

 Raise

 assert

8. Input and Output (03 Periods)

 Introduction

 Data Streams

 Creating Your Own Data Streams

 Access Modes

 Writing Data to a File

 Reading Data From a File

 Additional File Methods

 Using Pipes as Data Streams

 Handling IO Exceptions

9. Classes in Python (07 Periods)

 Classes in Python

 Principles of Object Orientation

 Creating Classes

 Instance Methods

 File Organization

 Special Methods

 Class Variables

 Inheritance

 Polymorphism

10. Regular Expressions (05 Periods)

 Introduction

 Simple Character Matches

 Special Characters

 Character Classes

 Quantifiers

 The Dot Character

 Greedy Matches

 Grouping

 Matching at Beginning or End

 Match Objects

 Substituting

 Splitting a String

 Compiling Regular Expressions

 Flags

LIST OF PRACTICALS

1. Getting started with Python and IDLE in interactive and batch modes

2. What do the following string methods do?

 lower

 count

 replace

Python – Introduction

Python is a high-level, interpreted, interactive and object-oriented
scripting language. Python is designed to be highly readable. It uses
English keywords frequently where as other languages use punctuation,
and it has fewer syntactical constructions than other languages.

● Python is Interpreted − Python is processed at runtime by the

interpreter. You do not need to compile your program before executing it.

This is similar to PERL and PHP.

● Python is Interactive − You can actually sit at a Python prompt and

interact with the interpreter directly to write your programs.

● Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

● Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide range

of applications from simple text processing to WWW browsers to games.

History of Python

Python was developed by Guido van Rossum in the late eighties and
early nineties at the National Research Institute for Mathematics and
Computer Science in the Netherlands.

Python is derived from many other languages, including ABC, Modula-3,
C, C++, Algol-68, SmallTalk, and Unix shell and other scripting
languages.

Python is copyrighted. Like Perl, Python source code is now available
under the GNU General Public License (GPL).

Python is now maintained by a core development team at the institute,
although Guido van Rossum still holds a vital role in directing its
progress.

Python Features:

Python's features include −

● Easy-to-learn − Python has few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick up the

language quickly.

● Easy-to-read − Python code is more clearly defined and visible to the eye.

● A broad standard library − Python's bulk of the library is very portable

and cross-platform compatible on UNIX, Windows, and Macintosh.

● Interactive Mode − Python has support for an interactive mode which

allows interactive testing and debugging of snippets of code.

● Portable − Python can run on a wide variety of hardware platforms and

has the same interface on all platforms.

● Extendable − You can add low-level modules to the Python interpreter.

These modules enable programmers to add to or customize their tools to

be more efficient.

● Databases − Python provides interfaces to all major commercial databases.

● GUI Programming − Python supports GUI applications that can be

created and ported to many system calls, libraries and windows systems,

such as Windows MFC, Macintosh, and the X Window system of Unix.

● Scalable − Python provides a better structure and support for large

programs than shell scripting.

Apart from the above-mentioned features, Python has a big list of good
features, few are listed below −

● It supports functional and structured programming methods as well as OOP.

● It can be used as a scripting language or can be compiled to

byte-code for building large applications.

● It provides very high-level dynamic data types and supports

dynamic type checking.

● It supports automatic garbage collection.

● It can be easily integrated with C, C++, COM, ActiveX, CORBA, and Java.

Python- Variables
Variables are nothing but reserved memory locations to store values.
This means that when you create a variable you reserve some space in
memory.Based on the data type of a variable, the interpreter allocates
memory and decides what can be stored in the reserved memory.
Therefore, by assigning different data types to variables, you can store
integers, decimals or characters in these variables.

Assigning Values to Variables

Python variables do not need explicit declaration to reserve memory
space. The declaration happens automatically when you assign a value
to a variable. The equal sign (=) is used to assign values to variables.

The operand to the left of the = operator is the name of the variable
and the operand to the right of the = operator is the value stored in the
variable. For example −

Here, 100, 1000.0 and "John" are the values assigned to counter,
miles, and name variables, respectively. This produces the following
result −

Multiple Assignment

Python allows you to assign a single value to several variables
simultaneously. For example −

Here, an integer object is created with the value 1, and all three
variables are assigned to the same memory location. You can also
assign multiple objects to multiple variables. For example −

Here, two integer objects with values 1 and 2 are assigned to variables
a and b respectively, and one string object with the value "john" is
assigned to the variable c.

Standard Data Types

The data stored in memory can be of many types. For example, a
person's age is stored as a numeric value and his or her address is
stored as alphanumeric characters. Python has various standard data
types that are used to define the operations possible on them and the
storage method for each of them.

Python has five standard data types −

● Numbers

● String

● List

● Tuple

● Dictionary

Python Numbers

Number data types store numeric values. Number objects are created when
you assign a value to them. For example −

You can also delete the reference to a number object by using the del
statement. The syntax of the del statement is −

You can delete a single object or multiple objects by using the del
statement. For example −

Python supports four different numerical types −

● int (signed integers)

● long (long integers, they can also be represented in octal and hexadecimal)

● float (floating point real values)

● complex (complex numbers)

Examples
Here are some examples of numbers −

long float complex

51924361L 0.0 3.14j

-0x19323L 15.20 45.j

0122L -21.9 9.322e-36j

Python Strings

Strings in Python are identified as a contiguous set of characters
represented in the quotation marks. Python allows for either pairs of
single or double quotes. Subsets of strings can be taken using the slice
operator ([
] and [:]) with indexes starting at 0 in the beginning of the string and
working their way from -1 at the end.

The plus (+) sign is the string concatenation operator and the asterisk
(*) is the repetition operator. For example −

This will produce the following result −

Python Lists

Lists are the most versatile of Python's compound data types. A list
contains items separated by commas and enclosed within square
brackets ([]). To some extent, lists are similar to arrays in C. One
difference between them is that all the items belonging to a list can be
of different data type.

The values stored in a list can be accessed using the slice operator ([]
and [:]) with indexes starting at 0 in the beginning of the list and
working their way to end -1. The plus (+) sign is the list concatenation
operator, and the

asterisk (*) is the repetition operator. For example-

This produce the following result −

Python Tuples
A tuple is another sequence data type that is similar to the list. A tuple
consists of a number of values separated by commas. Unlike lists,
however, tuples are enclosed within parentheses.

The main differences between lists and tuples are: Lists are enclosed in
brackets ([]) and their elements and size can be changed, while
tuples are enclosed in parentheses (()) and cannot be updated.
Tuples can be thought of as read-only lists. For example −

This produce the following result −

The following code is invalid with tuple, because we attempted to update a
tuple, which is not allowed. Similar case is possible with lists −

Python Dictionary

Python's dictionaries are kind of hash table type. They work like
associative arrays or hashes found in Perl and consist of key-value
pairs. A dictionary key can be almost any Python type, but are usually
numbers or strings. Values, on the other hand, can be any arbitrary
Python object.

Dictionaries are enclosed by curly braces ({ }) and values can be assigned
and accessed using square braces ([]). For example −

This produce the following result −

Dictionaries have no concept of order among elements. It is incorrect to
say that the elements are "out of order"; they are simply unordered.

Data Type Conversion
Sometimes, you may need to perform conversions between the built-in
types. To convert between types, you simply use the type name as a
function.

There are several built-in functions to perform conversion from one
data type to another. These functions return a new object representing
the converted value.

Sr.No. Function & Description

1 int(x [,base])

Converts x to an integer. base specifies the base if x is a string.

2 long(x [,base])

Converts x to a long integer. base specifies the base if x is a string.

3 float(x)

Converts x to a floating-point number.

4 complex(real [,imag])

Creates a complex number.

5 str(x)

Converts object x to a string representation.

6 repr(x)

Converts object x to an expression string.

7 eval(str)

Evaluates a string and returns an object.

Sr.No. Function & Description

8 tuple(s)

Converts s to a tuple.

9 list(s)

Converts s to a list.

10 dict(d)

Creates a dictionary. d must be a sequence of (key,value) tuples.

11 frozenset(s)

Converts s to a frozen set.

12 chr(x)

Converts an integer to a character.

13 unichr(x)

Converts an integer to a Unicode character.

14 ord(x)

Converts a single character to its integer value.

15 hex(x)

Converts an integer to a hexadecimal string.

16 oct(x)

Converts an integer to an octal string.

Basic Operators

Operators are the constructs which can manipulate the value of
operands. Consider the expression 4 + 5 = 9. Here, 4 and 5 are
called operands and
+ is called operator.

Types of Operator:

Python language supports the following types of operators.

● Arithmetic Operators

● Comparison (Relational) Operators

● Assignment Operators

● Logical Operators

● Bitwise Operators

● Membership Operators

● Identity Operators

Let us have a look at all the operators one by one.

Python Arithmetic Operators
Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

+ Addition Adds values on either side of the operator. a + b = 30

- Subtraction Subtracts right hand operand from left hand operand. a – b = - 10

*
Multiplication

Multiplies values on either side of the operator a * b = 200

/ Division Divides left hand operand by right hand operand b / a = 2

% Modulus Divides left hand operand by right hand operand and
returns remainder

b % a = 0

** Exponent Performs exponential (power) calculation on operators a**b
=10 to the
power 20

// Floor Division - The division of operands where the
result is the quotient in which the digits after the
decimal point are removed. But if one of the
operands is negative, the result is floored, i.e.,
rounded away from zero (towards negative
infinity) −

9//2 = 4 and 9.0//2.0
= 4.0,
-11//3 =
-4, - 11.0//3
= -4.0

https://www.tutorialspoint.com/python/arithmetic_operators_example.htm

Python Comparison Operators

These operators compare the values on either sides of them and decide
the relation among them. They are also called Relational operators.

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

== If the values of two operands are equal, then the condition
becomes true.

(a == b)
is not
true.

!= If values of two operands are not equal, then condition
becomes true.

(a != b)
is true.

<> If values of two operands are not equal, then condition
becomes true.

(a <> b)
is true.
This is
similar to
!=
operator.

> If the value of left operand is greater than the value of
right operand, then condition becomes true.

(a > b)
is not
true.

< If the value of left operand is less than the value of right
operand, then condition becomes true.

(a < b)
is true.

>= If the value of left operand is greater than or equal to the
value of right operand, then condition becomes true.

(a >= b)
is not
true.

<= If the value of left operand is less than or equal to the
value of right operand, then condition becomes true.

(a <= b)
is true.

https://www.tutorialspoint.com/python/comparison_operators_example.htm

Python Assignment Operators

Assume variable a holds 10 and variable b holds 20, then −

[Show Example]

Operator Description Example

= Assigns values from right side operands to left side
operand

c = a + b
assigns value of
a
+ b into c

+= Add AND It adds right operand to the left operand and assign
the result to left operand

c += a is
equivalent to c
= c + a

-= Subtract
AND

It subtracts right operand from the left operand and
assign the result to left operand

c -= a is
equivalent to c
= c - a

*= Multiply
AND

It multiplies right operand with the left operand and
assign the result to left operand

c *= a is
equivalent to c
= c * a

/= Divide AND It divides left operand with the right operand and
assign the result to left operand

c /= a is
equivalent to c
= c / ac /= a is
equivalent to c
= c /

%= Modulus
AND

It takes modulus using two operands and assign the
result to left operand

c %= a is
equivalent to c
= c
% a

**= Exponent
AND

Performs exponential (power) calculation on
operators and assign value to the left operand

c **= a is
equivalent to c
= c
** a

//= Floor
Division

It performs floor division on operators and assign
value to the left operand

c //= a is
equivalent to c
= c // a

https://www.tutorialspoint.com/python/assignment_operators_example.htm

Python Bitwise Operators

Bitwise operator works on bits and performs bit by bit operation. Assume if
a = 60; and b = 13; Now in binary format they will be as follows −

a = 0011 1100

b = 0000 1101

a&b = 0000 1100

a|b = 0011 1101

a^b = 0011 0001

~a = 1100 0011

There are following Bitwise operators supported by Python

language [Show Example]

& Binary AND Operator copies a bit to the result if it exists in
both operands

(a & b) (means
0000 1100)

| Binary OR It copies a bit if it exists in either operand. (a | b) = 61 (means
0011 1101)

^ Binary XOR It copies the bit if it is set in one operand but
not both.

(a ^ b) = 49
(means
0011 0001)

~ Binary Ones
Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61
(means 1100 0011
in 2's complement
form due to a signed
binary number.

<< Binary Left
Shift

The left operands value is moved left by the
number of bits specified by the right operand.

a << 2 =
240 (means
1111 0000)

>> Binary Right
Shift

The left operands value is moved right by the
number of bits specified by the right operand.

a >> 2 =
15 (means
0000 1111)

https://www.tutorialspoint.com/python/bitwise_operators_example.htm

Python Logical Operators
There are following logical operators supported by Python language.
Assume variable a holds 10 and variable b holds 20

then [Show Example]

AND true. is true.

or Logical OR If any of the two operands are non-zero then
condition becomes true.

(a or b)
is true.

not Logical
NOT

Used to reverse the logical state of its operand. Not(a
and b) is
false.

Used to reverse the logical state of its operand.

Python Membership Operators

Python’s membership operators test for membership in a sequence,
such as strings, lists, or tuples. There are two membership operators as
explained below −

[Show Example]

Operator Description Example

in Evaluates to true if it finds a variable in the specified
sequence and false otherwise.

x in y, here in
results in a 1 if x is
a member of
sequence y.

not in Evaluates to true if it does not finds a variable in the
specified sequence and false otherwise.

x not in y, here not
in results in a 1 if x
is not a member of
sequence y.

https://www.tutorialspoint.com/python/logical_operators_example.htm
https://www.tutorialspoint.com/python/membership_operators_example.htm

Python Identity Operators
Identity operators compare the memory locations of two objects. There are
two Identity operators explained below −

[Show Example]

Operator Description Example

is Evaluates to true if the variables on either side of the
operator point to the same object and false
otherwise.

x is y,
here is results
in 1 if id(x)
equals id(y).

is not Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

x is not y,
here is
not results in
1 if id(x) is
not equal to
id(y).

Python Operators Precedence

The following table lists all operators from highest precedence to

lowest.

[Show Example]

Operators Meaning

() Parentheses

** Exponent

https://www.tutorialspoint.com/python/identity_operators_example.htm
https://www.tutorialspoint.com/python/operators_precedence_example.htm

+x, -x, ~x Unary plus, Unary minus, Bitwise

NOT

*, /, //, % Multiplication, Division, Floor

division, Modulus

+, - Addition, Subtraction

<<, >> Bitwise shift operators

& Bitwise AND

^ Bitwise XOR

| Bitwise OR

==, !=, >, >=, <, <=, is, is not, in, not in Comparisons, Identity, Membership

operators

not Logical NOT

and Logical AND

or Logical OR

Decision Making:
Decision making is anticipation of conditions occurring while execution of
the program and specifying actions taken according to the conditions.

Decision structures evaluate multiple expressions which produce TRUE or
FALSE as outcome. You need to determine which action to take and
which statements to execute if outcome is TRUE or FALSE otherwise.

Python programming language assumes any non-zero and non-null values as TRUE, and if it is

either zero or null, then it is assumed as FALSE value.

Python programming language provides following types of decision making statements.

Sr.No. Statement & Description

1 if statements

An if statement consists of a boolean expression followed by one or more

statements.

https://www.tutorialspoint.com/python/python_if_statement.htm

2 if...else statements

An if statement can be followed by an optional else statement, which

executes when the boolean expression is FALSE.

3 nested if statements

You can use one if or else if statement inside another if or else if

statement(s).

1.Python if statement:

if statement is the most simple form of decision-making statement. It takes an expression and

checks if the expression evaluates to True then the block of code in if statement will be executed.

If the expression evaluates to False, then the block of code is skipped.

Syntax:

if (expression):

Statement 1

Statement 2

Statement n .

https://www.tutorialspoint.com/python/python_if_else.htm
https://www.tutorialspoint.com/python/nested_if_statements_in_python.htm

Example 1:

a = 20 ; b = 20

if (a == b):

print(“a and b are equal”)

print(“If block ended”)

Output:

a and b are equal

If block ended

Example 2:

num = 5

if (num >= 10):

print(“num is greater than 10”)

print(“if block ended”)

Output:

If block ended

In example 1, we see that the condition a==b evaluates to True. Therefore, the block of

code inside if statement is executed.

In example 2, the condition evaluates to False, therefore, the print statement was not

executed and the only statement that got executed was because it was outside the if

block.

Note: Don’t forget to add a colon(:) after if statement and indent the statements

properly that are executed when a condition is True.

2.Python if-else statement:

From the name itself, we get the clue that the if-else statement checks the expression and

executes the if block when the expression is True otherwise it will execute the else block of

code. The else block should be right after if block and it is executed when the expression is

False.

Syntax:

if(expression):

Statement

else:

Statement

Example 1:

number 1 = 20 ; number2 = 30

if(number1 >= number2):

print(“number 1 is greater than number 2”)

else:

print(“number 2 is greater than number 1”)

Output:

number 2 is greater than number 1

Note: Only one else statement is followed by an if statement. If you use two else

3.Python Nested if statement

In very simple words, Nested if statements is an if statement inside another if

statement. Python allows us to stack any number of if statements inside the block of

another if statements. They are useful when we need to make a series of decisions.

Syntax:

if (expression):

if(expression):

Statement of nested if

else:

Statement of nested if else

Statement of outer if

Statement outside if block

Example :

num1 = int(input())

num2 = int(input())

if(num1>= num2):

if(num1 == num2):

print(f'{num1} and {num2} are equal')

else:

print(f'{num1} is greater than {num2}')

else:

print(f'{num1} is smaller than {num2}')

Output 1:

10

20

10 is smaller than 20

Output 2:

5

5

5 and 5 are equal

Loops
In general, statements are executed sequentially: The first statement in
a function is executed first, followed by the second, and so on. There
may be a situation when you need to execute a block of code several
times.

● A loop statement allows us to execute a statement or group of statements
multiple times. They are pretty useful and can be applied to various use cases.

The following diagram illustrates a loop statement −

1. Python For in loop
For loop in Python is used to iterate over a sequence of items like list, tuple, set,
dictionary, string or any other iterable objects.

Syntax:

for item in sequence:

body of for loop

The Python for loop doesn’t need indexing unlike other programming languages
(C/C++ or Java). It works like an iterator and the item variable will contain an item
from the sequence at each iteration.

The for loop continues until we reach the end of the sequence.

Flowchart of for loop in Python

Code:

for item in [1,2,3,4]:

print(item)

Output:

1

2

3

4

a. The range() function

When using for loops in Python, the range() function is pretty useful to specify the

number of times the loop is executed. It yields a sequence of numbers within a

specified range.

Syntax:

range(start, stop, step)

● The first argument is the starting value. It is zero by default.

● The second argument is the ending value of the range.

● The third argument is the number of steps to take after each yield.

#converting range to list

Code:

list(range(10))

list(range(4,10))

list(range(2,10,2))

Output:

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9],

[4, 5, 6, 7, 8, 9],

[2, 4, 6, 8]

b. Iterating over range object

You can use the for loop to iterate over the range of objects.

Code:

for i in range(2,20,2):

print(i)

Output:

2

4

6

8

10

12

14

16

18

Similarly, we can iterate the same way in tuples, lists, sets, and strings.

Code:

for char in “Hello”:

print(char)

Output:

H

e

l

l

o

c. Using else in for loop

In Python programming, the loops can also have an else part which will be executed

once when the loop terminates.

Code:

for i in [1, 2, 3, 4]:

print(i)

else:

print(“The loop ended”)

Output:

1

2

3

4

The loop ended

2. Python While loop
The while loop in Python executes a block of code until the specified condition

becomes False.

Flowchart of while loop in Python

Syntax:

while(condition):

Body of while

Inside while block

Code:

count = 0

while(count< 10):

print(count)

count = count + 2

Output:

0

2

4

6

8

In the example, the while statement checks if count is less than 10.

Initially, count is zero so the statement is true and it executes the body of while. Then

the count gets incremented by 2. Again we check the condition and this goes on till the

condition becomes false.

Here, when our code checks 10<10, the statement returns False and so the code in

while block is not executed.

a. Infinite loop

A loop is called an infinite loop when the loop will never reach its end.

Usually, when a condition is always True in a while loop, the loop will become an

infinite loop. So we should be careful when writing conditions and while updating

variables used in the loop.

In Python shell, we can program on an infinite loop by using CTRL + C. Sometimes,

we need to implement an infinite terminate loop for example, when reading frames

from a webcam.

Code:

while (True):

print(“Infinite Loop”)

This code will keep on printing the “Infinite Loop” statement. We terminate the loop

by pressing CTRL + C.

b. Using else in while loop

The while loop may also have an else part after the loop. It is executed only when the

condition of while loop becomes false. But if we break out of the loop before the

condition has not reached false, then the else block does not get executed.

Code:

num = 0

while(num<10):

print(num)

num += 1

if(num==5):

break

else:

print('Loop ended')

Output:

0

1

2

3

4

Here the else statement didn’t get executed because the break statement ends the loop

execution and the while condition therefore never becomes false.

3. Python Nested Loops
We can nest a loop inside another loop which simply means that a loop within a loop.

Let’s see this with an example.

Code:

for num1 in range(3):

for num2 in range(5, 8):

print(num1, ",", num2)

Output:

0 , 5

0 , 6

0 , 7

1 , 5

1 , 6

1 , 7

2 , 5

2 , 6

2 , 7

From this example, you can observe that the first iteration of the outer loop will run

the whole inner loop and then in the next iteration of the outer loop, the inner loop

gets executed again. This process is repeated until we reach the end of the outer loop.

4. Loop Control Statements in Python

Python allows us to control the flow of the execution of the program in a certain

manner. For this we use the continue, break and pass keywords.

a. break

The break statement inside a loop is used to exit out of the loop. Sometimes in a

program, we need to exit the loop when a certain condition is fulfilled.

Code:

num = 0

while(num <10):

num +=1

if(num==5): break

print(num)

print("Loop ended")

Output:

1

2

3

4

Loop ended

b. continue

The continue statement is used to skip the next statements in the loop.

When the program reaches the continue statement, the program skips the statements

after continue and the flow reaches the next iteration of the loop.

Let’s take the same example –

Code:

num = 0

while(num <10):

num +=1

if(num==5): continue

print(num)

print("Loop ended")

Output:

1

2

3

4

6

7

8

9

10

Loop ended

Here, we see that when the num variable is equal to 5, the continue statement is

executed. It then doesn’t execute the lines after the continue statement and the control

is sent to the next iteration.

c. pass

The pass is a null statement and the Python interpreter returns a no-operation (NOP)

after reading the pass statement. Nothing happens when the pass statement is

executed. It is used as a placeholder when implementing new methods or we can use

them in exception handling.

Code:

nums = [1,2,3,4]

for num in nums:

pass

print(nums)

Python Functions

Python is object-oriented but also supports functional programming.

In this tutorial, you will learn about Python functions and will learn to create them and

call them.

Also, you will get to understand the parameters of functions in Python, the return

statement, anonymous functions in Python, and lastly, you will see what is recursion

in Python.

What are Functions in Python?

A function is a block of code that has a name and you can call it. Instead of writing

something 100 times, you can create a function and then call it 100 times. You can call

it anywhere and anytime in your program. This adds reusability and modularity to

your code.Functions can take arguments and return values.

Types of Python Functions

Functions can be of two types – built-in or user-defined.

● Build-in functions:

The Python built-in functions are defined as the functions whose functionality is

pre-defined in Python. The python interpreter has several functions that are

always present for use.

The dict() method creates a dictionary

The dir() method returns a list of valid attributes of the specified object.

● User defined Functions:

Functions that we define ourselves to do certain specific task are referred as

user-defined functions.

Python has many useful built-in functions like print() and type() but in this article, we

will focus on user-defined functions.

● Creating Functions in Python:

To define a function, we follow this syntax:

Syntax:

def func(parameters):

code

return

● To define a function, you use the def keyword. You give the function a name and

it can take some parameters if you want. Then you specify a block of code that

https://www.tutorialsteacher.com/python/python-dict

will execute when you call the function.

● There are no curly braces in Python and so you need to indent this code block

otherwise it won’t work. You can make the function return a value.

Let’s take an example for you.

Code:

def add(a,b):

print("I will add two numbers")

return a+b

This function prints “I will add two numbers” and returns the sum of two numbers.

Code:

>>> add(2,4)

Output:

I will add two numbers

6

● Calling Functions in Python

To call a function, use the function name followed by parenthesis:

Example:

def my_function():

print("Hello from a function"

my_function()

Output:

Hello from a function

Closures in Python:

Like nested loops, we can also nest functions. That said, Python gives us the power to

define functions within functions.

● Python Closures are these inner functions that are enclosed within the outer

function. Closures can access variables present in the outer function scope. It

can access these variables even after the outer function has completed its

execution.

Python simple closure example

The following is a simple example of a Python closure.

simple_closure.py

#!/usr/bin/python

def make_printer(msg):

msg = "hi there"

def printer():

print(msg)

return printer

myprinter = make_printer("Hello there")

myprinter()

myprinter()

myprinter()

In the example, we have a make_printer function, which creates and

returns a function. The nested printer function is the closure.

myprinter = make_printer("Hello there")

The make_printer function returns a printer function and assigns it to

the myprinter variable. At this moment, it has finished its execution.

However, the printer closure still has access to the msg variable.

$./simple_closure.py

hi there

hi there

hi there

The globals() and locals() Functions

● The globals() and locals() functions can be used to return the names in the global

and local namespaces depending on the location from where they are called.

● If locals() is called from within a function, it will return all the names that can be

accessed locally from that function.

● If globals() is called from within a function, it will return all the names that can be

accessed globally from that function.

● The return type of both these functions is dictionary. Therefore, names can be

extracted using the keys() function.

Python Function Parameters

Functions can take values and operate on them.

In the above example, the add() function takes parameters a and b.

Python has 3 types of parameters or arguments other than positional/required

arguments – default, keyword, arbitrary.

1. Default Arguments

You can specify a default value for arguments. If the user calls the function, they can

skip providing a value for that argument. The default value is used.

Code:

def add(a, b=4):

return a+b

Now you can call it with one or two values.

Code:

>>> add(2,4)

Output:

6

Code:

>>> add(2)

Output:

6

Here b is 4 by default so it returns 2+4, which is 6.

Functions can have any number of default arguments.

2. Keyword Arguments

If you pass keyword arguments to a function, you don’t need to remember the order of

the parameters.

Code:

def add(a, b):

return a+b

Code:

>>> add(b=4,a=2)

Output:

6

3. Arbitrary Arguments

If you don’t know how many arguments your function will get at runtime, you can use

the arbitrary arguments *args and **kwargs.

*args is a variable number of arguments and **kwargs is a variable number of keyword

arguments. You can call them anything.

Code:

def add(*args,**kwargs):

result=0

for arg in args:

result+=arg

print(result)

for key,value in kwargs.items():

print(key,value)

Code:

>>> add(2,4,6,a=8,b=10)

Output:

12

a 8

b 10

2, 4, 6, are in *args and a=8 and b=10 are in **kwargs.

Result is 12.

You cannot pass positional arguments after keyword arguments.

Code:

>>> add(2,4,6,a=8,7,b=10)

Output:

SyntaxError: positional argument follows keyword argument

a.The Return Statement in Python

It is not mandatory for a function to return a value but it can. For this, you use the

return keyword.

Code:

def show_names(names):

return names

Code:

>>> show_names(['Jack', 'Paris', 'Nicole'])

Output:

[‘Jack’, ‘Paris’, ‘Nicole’]

This function returns a list.

b.Anonymous Functions in Python

If you want a function only once or it has only one line of code, you can avoid giving it

a name. They are called lambda expressions.

Code:

>>> lambda a=2,b=4:a+b

<function <lambda> at 0x00000198A3692168>

Now to call this:

Code:

>>> (lambda a=2,b=4:a+b)()

Output:

6

Let’s try more possibilities.

Code:

>>> (lambda a,b:a+b)(2,4)

Output:

6

c.Recursion in Python

When a function calls itself, it is recursion. In other words, when a function body has

calls to the function itself, it is recursion.

For recursion, you should specify a base condition otherwise the function can execute

infinitely.

Let’s take the example of calculating factorials.

Code:

def factorial(num):

if num==1: return 1

return num*factorial(num-1)

Code:

>>> factorial(4)

Output:

24

factorial(4) returns 4*factorial(3). factorial(3) returns 3*factorial(2). factorial(2)

returns 2*factorial(1). factorial(1) returns 1.

So we have 4*3*2*1. This is equal to 24. So it returns the value 24.

Modules in Python

Modules provide us with a way to share reusable functions. A module is simply a

“Python file” which contains code we can reuse in multiple Python programs. A

module may contain functions, classes, lists, etc.

Modules in Python can be of two types:

● Built-in Modules.

● User-defined Modules.

1. Built-in Modules in Python:

One of the many superpowers of Python is that it comes with a “rich standard library”.

This rich standard library contains lots of built-in modules. Hence, it provides a lot of

reusable code.

To name a few, Python contains modules like “os”, “sys”, “datetime”, “random”.

You can import and use any of the built-in modules whenever you like in your

program.

2. User-Defined Modules in Python:

Another superpower of Python is that it lets you take things in your own hands. You

can create your own functions and classes, put them inside modules and voila! You can

now include hundreds of lines of code into any program just by writing a simple

import statement.

To create a module, just put the code inside a .py file. Let’s create one.

my Python module

def greeting(x):

print("Hello,", x)

● Importing Modules in Python

We use the import keyword to import both built-in and user-defined modules in

Python.

Let’s import our user-defined module from the previous section into our Python shell:

>>> import mypymodule

To call the greeting function of mypymodule, we simply need to use the dot notation:

>>> mypymodule.greeting("Techvidvan")

Output

Hello, Techvidvan

Using import…as statement (Renaming a module)

This lets you give a shorter name to a module while using it in your program.

>>> import random as r

>>> r.randint(20, 100)

Output

54

The dir() Function:

The dir() built-in function returns a sorted list of strings containing the names defined by

a module.

The list contains the names of all the modules, variables and functions that are defined in

a module. Following is a simple example −

Code:

#!/usr/bin/python

Import built-in module math

import math

content = dir(math)

print content

When the above code is executed, it produces the following result −

Output:

['__doc__', '__file__', '__name__', 'acos', 'asin', 'atan',

'atan2', 'ceil', 'cos', 'cosh', 'degrees', 'e', 'exp',

'fabs', 'floor', 'fmod', 'frexp', 'hypot', 'ldexp', 'log',

'log10', 'modf', 'pi', 'pow', 'radians', 'sin', 'sinh',

'sqrt', 'tan', 'tanh']

1.sys Module

The sys module provides functions and variables used to manipulate different parts of the

Python runtime environment.

sys.argv

sys.argv returns a list of command line arguments passed to a Python script. The item at

index 0 in this list is always the name of the script. The rest of the arguments are stored at

the subsequent indices.

sys.exit

This causes the script to exit back to either the Python console or the command prompt.

This is generally used to safely exit from the program in case of generation of an

exception.

2.Math Module

Some of the most popular mathematical functions are defined in the math module. These

include trigonometric functions, representation functions, logarithmic functions, angle

conversion functions, etc. In addition, two mathematical constants are also defined in this

module.

math.log()

The math.log() method returns the natural logarithm of a given number. The natural

logarithm is calculated to the base e.

>>> import math

>>>math.log(10)

2.302585092994046

Exceptions:

What are Exceptions?

Python is an interpreted language. When you are coding in the Python interpreter, you

often have to deal with runtime errors. These are runtime exceptions.

When there is an exception, all execution stops and it displays a red error message on

the screen. But if we can handle it, the program will not crash. So an exception is when

something goes wrong and your program cannot run anymore.

● Exceptions are raised when the program is syntactically correct, but the code

resulted in an error. This error does not stop the execution of the program,

however, it changes the normal flow of the program.

● In Python, we can throw an exception in the try block and catch it in except

block.

Python has built-in exceptions but you can also define your own exceptions. This code

raises an exception:

Code:

>>> print(1/0)

Output:

Traceback (most recent call last):

File “<pyshell#213>”, line 1, in <module>

print(1/0)

ZeroDivisionError: division by zero

It is not possible to divide 1 by 0, so the program has to stop, it cannot execute

anymore. So it raises a ZeroDivisionError. This is an in-built exception in Python.

Why use Exception

● Standardized error handling: Using built-in exceptions or

creating a custom exception with a more precise name and

description, you can adequately define the error event, which

helps you debug the error event.

● Cleaner code: Exceptions separate the error-handling code

from regular code, which helps us to maintain large code

easily.

● Robust application: With the help of exceptions, we can

develop a solid application, which can handle error event

efficiently

● Exceptions propagation: By default, the exception propagates

the call stack if you don’t catch it. For example, if any error

event occurred in a nested function, you do not have to

explicitly catch-and-forward it; automatically, it gets

forwarded to the calling function where you can handle it.

● Different error types: Either you can use built-in exception or

create your custom exception and group them by their

generalized parent class, or Differentiate errors by their

actual class.

What are Errors?

An error is an action that is incorrect or inaccurate. For example, syntax error.

Due to which the program fails to execute.

What is exception handling?

Exception handling is the process of responding to unwanted or unexpected events

when a computer program runs. Exception handling deals with these events to avoid

the program or system crashing, and without this process, exceptions would disrupt

the normal operation of a program.

●The try-expect statement
If the Python program contains suspicious code that may throw the exception, we must

place that code in the try block. The try block must be followed with the except

statement, which contains a block of code that will be executed if there is some exception

in the try block.

Syntax:

try:

#block of code

except Exception1:

#block of code

Consider the following example.

Example 1

a = int(input("Enter a:"))

b = int(input("Enter b:"))

c = a/b

except:

print("Can't divide with zero")

Output:

Enter a:10

Enter b:0

Can't divide with zero

We can also use the else statement with the try-except statement in which, we can place

the code which will be executed in the scenario if no exception occurs in the try block.

● The syntax to use the else statement with the try-except statement is

given below.

try:
#block of code

except Exception1:
#block of code

else:
#this code executes if no except block is executed

Consider the following program.

Example 1:

try:

a = int(input("Enter a:"))

b = int(input("Enter b:"))

c = a/b

print("a/b = %d"%c)

Using Exception with except

statement. If we print(Exception) it will return exception class

except Exception:

print("can't divide by zero")

print(Exception)

else:

print("Hi I am else block")

Output:

Enter a:10

Enter b:0

can't divide by zero

● The except statement with no exception
Python provides the flexibility not to specify the name of exception with the exception

statement.

● Consider the following example.

Example:

try:

a = int(input("Enter a:"))

b = int(input("Enter b:"))

c = a/b;

print("a/b = %d"%c)

except:

● The except statement using with exception variable
We can use the exception variable with the except statement. It is used by using the as

keyword. this object will return the cause of the exception.

Consider the following example:

try:

a = int(input("Enter a:"))

b = int(input("Enter b:"))

c = a/b

print("a/b = %d"%c)

Using exception object with the except statement

except Exception as e:

print("can't divide by zero")

print(e)

else:

print("Hi I am else block")

Output:

Enter a:10

Enter b:0

can't divide by zero

division by zero

Points to remember:

1. Python facilitates us to not specify the exception with the except statement.

2. We can declare multiple exceptions in the except statement since the try block may

contain the statements which throw the different type of exceptions.

3. We can also specify an else block along with the try-except statement, which will be

executed if no exception is raised in the try block.

4. The statements that don't throw the exception should be placed inside the else

block.

● Declaring Multiple Exceptions

The Python allows us to declare the multiple exceptions with the except clause. Declaring

multiple exceptions is useful in the cases where a try block throws multiple exceptions.

The syntax is given below.

Syntax:

try:

#block of code

except (<Exception 1>,<Exception 2>,<Exception 3>,...<Exception n>)

#block of code

else:

#block of code

Consider the following example.

Example:

try:

a=10/0;

except(ArithmeticError, IOError):

print("Arithmetic Exception")

else:

print("Successfully Done")

Output:

Arithmetic Exception

● The try...finally block
Python provides the optional finally statement, which is used with the try statement. It is

executed no matter what exception occurs and used to release the external resource. We

can use the finally block with the try block in which we can pace the necessary code,

which must be executed before the try statement throws an exception.

Syntax:

try:

block of code

this may throw an exception

finally:

block of code

this will always be executed

Example:

try:

fileptr = open("file2.txt","r")

try:

fileptr.write("Hi I am good")

finally:

fileptr.close()

print("file closed")

except:

print("Error")

Output:

file closed

Error

Example:

The example below accepts two numbers from the user and performs their division. It

demonstrates the uses of else and finally blocks.

try:

print('try block')

x=int(input('Enter a number: '))

y=int(input('Enter another number: '))

z=x/y

except ZeroDivisionError:

print("except ZeroDivisionError block")

print("Division by 0 not accepted")

else:

print("else block")

print("Division = ", z)

finally:

print("finally block")

x=0

y=0

print ("Out of try, except, else and finally blocks.")

Output:

● The first run is a normal case. The out of the else and finally blocks is displayed

because the try block is error-free.

Output
try block Enter a number: 10 Enter another number: 2 else block

Division = 5.0 finally block Out of try, except, else and finally

blocks.

● The second run is a case of division by zero, hence, the except block and the finally

block are executed, but the else block is not executed.

Output
try block Enter a number: 10 Enter another number: 0 except

ZeroDivisionError block Division by 0 not accepted finally block Out of

try, except, else and finally blocks.

● In the third run case, an uncaught exception occurs. The finally block is still

executed but the program terminates and does not execute the program after the

finally block.

Output
try block Enter a number: 10 Enter another number: xyz finally block

Traceback (most recent call last): File "C:\python36\codes\test.py",

line 3, in <module> y=int(input('Enter another number: ')) ValueError:

invalid literal for int() with base 10: 'xyz'

● Typically the finally clause is the ideal place for cleaning up the operations in a

process. For example closing a file irrespective of the errors in read/write

operations.

● Raising exceptions
An exception can be raised forcefully by using the raise clause in Python. It is

useful in that scenario where we need to raise an exception to stop the execution of

the program.

For example, there is a program that requires 2GB memory for execution, and if the

program tries to occupy 2GB of memory, then we can raise an exception to stop the

execution of the program.

The syntax to use the raise statement is given below.

Syntax:

raise Exception_class,<value>

Points to remember:

1. To raise an exception, the raise statement is used. The exception class name

follows it.

2. An exception can be provided with a value that can be given in the

parenthesis.

3. To access the value "as" keyword is used. "e" is used as a reference variable

which stores the value of the exception.

4. We can pass the value to an exception to specify the exception type.

Example:

try:

age = int(input("Enter the age:"))

if(age<18):

raise ValueError

else:

print("the age is valid")

except ValueError:

print("The age is not valid")

Output:

Enter the age:17
The age is not valid

● The assert Statement
When it encounters an assert statement, Python evaluates the accompanying

expression, which is hopefully true. If the expression is false, Python raises an

AssertionError exception.

The syntax for assert is −

assert Expression[, Arguments]

Input-Output in Python

Python provides some built-in functions to perform both input and output operations.

1.Output Operation

In order to print the output, python provides us with a built-in function called print().

Example:

Print(“Hello Python”)

Output:

Hello Python

2.Reading Input from the keyboard (Input Operation)

Python provides us with two inbuilt functions to read the input from the keyboard.

● raw_input()

● input()

raw_input(): This function reads only one line from the standard input and returns it as a

String.

Note: This function is decommissioned in Python 3.

Example:

value = raw_input(“Please enter the value: ”);

print(“Input received from the user is: ”, value)

Output:

Please enter the value: Hello Python

https://www.softwaretestinghelp.com/python-print-function/

Input received from the user is:

Hello Python

input(): The input() function first takes the input from the user and then evaluates the

expression, which means python automatically identifies whether we entered a string or a

number or list.

But in Python 3 the raw_input() function was removed and renamed to input().

Example:

value = input(“Please enter the value: ”);

print(“Input received from the user is: ”, value)

Output:

Please enter the value: [10, 20, 30]

Input received from the user is: [10, 20, 30]

Output:

Files in Python

A file is a named location on the disk which is used to store the data permanently.

Here are some of the operations which you can perform on files:

● open a file

● read file

● write file

● close file

1.Open a File

Python provides a built-in function called open() to open a file, and this function returns a file object

called the handle and it is used to read or modify the file.

Syntax:

file_object = open(filename)

Example:

I have a file called test.txt in my disk and I want to open it. This can be achieved by:

#if the file is in the same directory

f = open(“test.txt”)

#if the file is in a different directory

f = open(“C:/users/Python/test.txt”)

We can even specify the mode while opening the file as if we want to read, write or append etc.

If you don’t specify any mode by default, then it will be in reading mode.

2. Reading Data from the File

In order to read the file, first, we need to open the file in reading mode.

Example:

f = open(“test.txt”, ‘r’)

#To print the content of the whole file

print(f.read())

#To read only one line

print(f.readline())

Example: 1

Output:

#3) Writing Data to File

In order to write the data into a file, we need to open the file in write mode.

Example:

f = open(“test.txt”, ‘w’)

f.write(“Hello Python \n”)

#in the above code ‘\n’ is next line which means in the text file it will

write Hello Python and point the cursor to the next line

f.write(“Hello World”)

Output:

Now if we open the test.txt file, we can see the content as:

Hello Python

Hello World

4.Close a File

Every time when we open the file, as a good practice we need to ensure to close the file, In python, we

can use close() function to close the file.

When we close the file, it will free up the resources that were tied with the file.

Input: Output:

#5) Create & Delete a File

In python, we can create a new file using the open method.

Example:

f = open(“file.txt”, “w”)

f.close()

Output:

Example:

import os

if os.path.exists(“file.txt”):

os.remove(“file.txt”)

print(“File deleted successfully”)

else:

print(“The file does not exist”)

●Python Classes

Object-oriented programming (OOP) may be a programming model that organises

software design around data, or objects, instead of functions and logic. An object is

often defined as a knowledge field that has unique attributes and behaviour.

Python Classes

Python is an object-oriented language and everything in it is an object. By using

Python classes and objects, we can model the real world.

A class is like a blueprint for objects – it has no values itself. It is an abstract data type.

We can have multiple objects of one class.

Defining a Class in Python

To define a class, we use the class keyword, not the def keyword we used to define

functions.

Let’s take an example.

Code:

>>> class Fruit:

pass

This was an empty class.

Now let’s declare a variable in it.

Code:

>>> class Fruit:

name=’fruit’

This is a class Fruit.

We use PascalCase to name classes here. And because Python does not use curly

braces, you need to indent the block of code in the class. Without that, it will raise an

exception.

● Creating an Object in Python

There is no need to use the new keyword for creating objects in Python. Just use this

class constructor:

Code:

>>> orange=Fruit()

>>> orange.name

Output:

‘Fruit’

This calls the __init__() method in the Fruit class.

We did not declare it, but it uses the default one.

Python classes can also have docstrings to explain what they do. But if you add a

docstring to a class, it should be the first thing in the class.

Code:

>>> class MyClass:

'''This class does nothing'''

pass

Code:

>>> MyClass

<class '__main__.MyClass'>

● The __init__() Method

So what is __init__()?

In most cases, we will need the __init__() method for classes.

This is a magic method (dunder method) which we can use to initialize values for

classes (objects). So __init__() has initialization code.

Every class has __init__ and this is executed when we instantiate the class. You can

also use this method to do anything you want to do when the object is being created.

Let’s learn with an example.

Code:

>>> class Fruit:

def __init__(self, color, size):

self.name='fruit'

self.color=color

self.size=size

1. Accessing Values

We have created the class, now let’s learn to create an object for it and access its

values.

Code:

>>> orange=Fruit('orange',8)

>>> orange.name

Output:

‘fruit’

Code:

>>> orange.color

Output:

‘orange’

Code:

>>> orange.size

Output:

8

Here, class Fruit has an object orange. This has a name, color, and size.

The name for all fruits is name, and color and size are passed as arguments. So orange

is the object with color ‘orange’ and size 8. We accessed the values with the dot

operator.

● Python Classes Methods

Python classes can have methods and functions. Functions are simply functions. But

methods act on an object and can modify it. Each method has to take the self

parameter as the first parameter. It tells it to work on this object. However, you can

call it anything you want.

Let’s define a method in class Fruit.

Code:

>>> class Fruit:

def __init__(self, color, size):

self.name='fruit'

self.color=color

self.size=size

def show(self):

print(f'I am a {self.name}, I am {self.color} and of size {self.size}')

Code:

>>> orange=Fruit('orange',8)

Now, we can call the show() method on the orange object. For this, we use the dot

operator.

Code:

>>> orange.show()

Output:

I am a fruit, I am orange and of size 8

You can call the self parameter anything.

Code:

>>> class Fruit:

def __init__(obj, color, size):

obj.name='fruit'

obj.color=color

obj.size=size

def show(obj):

print(f'I am a {obj.name}, I am {obj.color} and of size {obj.size}')

Code:

>>> orange=Fruit('orange',8)

>>> orange.show()

Output:

I am a fruit, I am orange and of size 8

You also have to use the self parameter even when a method does not take any

parameters.

● Changing Object Properties

In Python classes, we use the dot operator to access object properties and methods,

but we can also use it to modify them.

Code:

>>> orange.size=9

>>> orange.size

Output:

9

And we can also delete them with the del keyword.

Code:

>>> del orange.size

>>> orange.size

Output:

Traceback (most recent call last):

File “<pyshell#33>”, line 1, in <module>

orange.size

AttributeError: ‘Fruit’ object has no attribute ‘size’

We can also delete the complete object with the del keyword.

Code:

>>> del orange

>>> orange.size

Output:

Traceback (most recent call last):

File “<pyshell#35>”, line 1, in <module>

orange.size

NameError: name ‘orange’ is not defined

Python Class Variables

The Python Classes create new local namespaces with their attributes (data or

functions). You can make a variable belong to a class. This is not like instance

variables which belong to objects.

Code:

>>> class Fruit:

name='fruit'

def __init__(obj, color, size):

obj.color=color

obj.size=size

def show(obj):

print(f'I am a {obj.name}, I am {obj.color} and of size {obj.size}')

Code:

>>> orange=Fruit('orange',8)

>>> orange.name

Output:

‘fruit’

Here, the class Fruit has the class variable ‘orange’, but the orange object also has it.

1. Built-in Class Attributes

Python has some built-in class attributes that we can use to get more information

about the class.

a. __dict__ – It is a dictionary consisting of the class’ namespace.

Code:

>>> Fruit.__dict__

Output:

mappingproxy({‘__module__’: ‘__main__’, ‘__init__’: <function Fruit.__init__ at

0x0000023450FB0048>, ‘show’: <function Fruit.show at 0x0000023450FB00D0>, ‘__dict__’:

<attribute ‘__dict__’ of ‘Fruit’ objects>, ‘__weakref__’: <attribute ‘__weakref__’ of

‘Fruit’ objects>, ‘__doc__’: None})

b. __doc__ – It is the class docstring, but is None if there is no docstring in the class.

Code:

>>> Fruit.__doc__

Output:

>>>

c. __name__ – This is the class name.

Code:

>>> Fruit.__name__

Output:

‘Fruit’

d. __module__ – This is the name of the module in which the class is defined.

In the interactive mode, this is __main__.

Code:

>>> Fruit.__module__

Output:

‘__main__’

e. __bases__ – This is a tuple consisting of the base classes of this class.

Code:

>>> Fruit.__bases__

Output:

(<class ‘object’>,)

2.Instance Variables in Python

In python classes, Instance variables belong to objects. We saw an example, but now

we will see those other methods that __init__ can define them too.

Code:

>>> class Fruit:

def __init__(obj, color):

obj.name='fruit'

obj.color=color

def show(obj, size):

obj.size=size

print(f'I am a {obj.name}, I am {obj.color} and of size {obj.size}')

Code:

>>> orange=Fruit('orange')

>>> orange.show(8)

Output:

I am a fruit, I am orange and of size 8

Here, we define the size in the show() method using obj.size=size and it works like it

should.

●What is Polymorphism in Python?
Polymorphism gives you the ability to represent objects of different types using a

single interface.

A real-life example is You.

You act as a student when you are at college, you act like a son/daughter when you’re

at home, you act like a friend when you’re surrounded by your friends.

Now the analogy here is, different personalities of that of a student, a son/daughter, a

friend are all analogous to objects of different types.

And a single interface (i.e., you) represents all these different types(i.e. your different

personalities).

● Understanding Polymorphism in Python

Python can implement polymorphism in many different ways. Python, like many other

languages, also provides built-in implementations of Polymorphism.

Let’s look at the examples that illustrate built-in implementations of polymorphism in

Python.

Later in this article, we’ll see the various ways in which we can implement

Polymorphism in our own programs.

● Built-in implementation of Polymorphism

a. Polymorphism in ‘+’ operator

● You might have used the ‘+’ arithmetic python operator multiple times in

your programs.

● And chances are, you might have used it with multiple different types.

● This right here is an implementation of polymorphism in Python.

● You use the same + symbol whether you want to add two integers, or

concatenate two strings, or extend two lists.

● The + operator acts differently depending on the type of objects it is

operating upon.

For integers, it performs arithmetic addition and returns an integer:

>>> x = 1 + 2

>>> print(x)

Output:

3

>>>

Whereas for strings, it concatenates them and returns a new string:

>>> x = "TechVidvan says " + "Hello"

>>> print(x)

Output:

‘TechVidvan says Hello’

>>>

And for two lists, it returns a new list which contains elements of both the original

lists:

>>> x = [1, 2, 3] + [10, ‘TechVidvan’]

>>> print(x)

Output:

[1, 2, 3, 10, ‘TechVidvan’]

>>>

b. Polymorphism in built-in method

● Python also implements polymorphism using methods.

● For instance, take the len() method that returns the length of an object.

● The len() method is capable of processing objects of different data types.

● Let’s look at the code example below:

For a list, it returns the number of elements in the list.

>>> l = [1, 2, 3, 4, 5]

>>> length = len(l)

>>> print(length)

Output:

5

>>>

For a string, it returns the number of characters within it.

>>> s = “TechVidvan”

>>> length = len(s)

>>> print(length)

Output:

10

>>>

● For python dictionary, it returns the number of keys.

>>> d = {1: “Archie”, 2: “Brady”, 3: “Charlie”}

>>> length = len(d)

>>> print(length)

Output:

3

>>>

We have got a high-level view of what polymorphism is and how Python implements

it.

●Polymorphism in user-defined methods
In the below example, we have two classes ‘Rectangle’ and ‘Square’. Both these classes

have a method definition ‘area’, that calculates the area of the corresponding shapes.

class Rectangle:

def __init__(self, length, breadth):

self.l = length

self.b = breadth

def area(self):

return self.l * self.b

class Square:

def __init__(self, side):

self.s = side

def area(self):

return self.s ** 2

rec = Rectangle(10, 20)

squ = Square(10)

print("Area of rectangle is: ", rec.area())

print("Area of square is: ", squ.area())

Output:

Area of rectangle is: 200

Area of square is: 100

>>>

Here, we implemented polymorphism using the method area(). This method works on

objects of the types– Rectangle and Square. And it operates differently on objects of

different classes.

We can also achieve polymorphism with inheritance.

Let’s see how.

●Polymorphism with Inheritance in python
A child class inherits all the attributes and methods of its parent class. But we can

provide one or more methods with a different method definition within the child class.

We call this process “method overriding” and such methods “overridden” methods.

So overridden methods have the exact same external interface (method name, number

and type of method parameters) as the parent class’s method but have a different

internal implementation.

Let’s look at a very simple example:

#parent class

class Human:

def who_am_i(self):

print("I am a Human")

#child class

class Teacher(Human):

def who_am_i(self):

print("I am a Teacher")

t = Teacher()

t.who_am_i()

Output:

I am a Teacher

Here, we implement polymorphism by overriding the method who_am_i() and

providing it with a different implementation in the child class Teacher.

●What is Inheritance in Python?
Inheritance in object-oriented programming is inspired by the real-world inheritance

in human beings. We acquire some of the traits of our parents during birth.

In Python, inheritance is the capability of a class to pass some of its properties or

methods to it’s derived class(child class). With inheritance, we build a relationship

between classes based on how they are derived.

For example, every car, bus, bikes are vehicles.

So we can build relationships between them and a car can inherit things from the

vehicle. This can be represented as the given image.

Here, the Vehicle will be called parent or base class while the car, bus, and bike are its

child or derived class.

● Python Inheritance Example

To derive a class from another class we can simply use the name of the parent class in

parentheses after the class name.

Code:

class Fruit:

pass

class Apple(Fruit):

pass

Here, we have defined two classes Fruit and Apple. The Apple class is derived from the

Fruit class.

The pass statement is used to create an empty class. Python has an in-built function

issubclass() to check if a class is a subclass of another or not.

Code:

issubclass(Apple, Fruit)

Output:

True

● Types of Inheritance in Python

We can build different types of relationships between classes by the way they are

inherited. Python has 5 types of inheritance.

1. Single Inheritance in Python

In single inheritance, a single class inherits from a class. This is the simplest form of

inheritance.

Code:

class Parent:

def show(self):

print("Parent method")

class Child(Parent):

def display(self):

print("Child method")

c = Child()

c.display()

c.show()

Output:

Child method

Parent method

Here, we created an object of the Child class and we saw that from the Child object we

can even call the method of Parent class. This is the advantage of inheritance, we can

reuse the code we have written.

2. Multilevel Inheritance in Python

Python supports multilevel inheritance, which means that there is no limit on the

number of levels that you can inherit. We can achieve multilevel inheritance by

Inheriting one class from another which then is inherited from another class.

Code:

class A:

def methodA(self):

print("A class")

class B(A):

def methodB(self):

print("B class")

class C(B):

def methodC(self):

print("C class")

c = C()

c.methodA()

c.methodB()

c.methodC()

Output:

A class

B class

C class

Here, the object of C class can access the methods and properties of both A and B class

because they were inherited from top to bottom. But take note that the object of a B

class cannot access methods of the C class.

3. Multiple Inheritance in Python

Till now, we were inheriting from only one class at a time.

In multiple inheritance, we will see that Python also allows us to inherit from more

than one class. To achieve this we can provide multiple classes separated by commas.

Code:

class A:

def methodA(self):

print("A class")

class B:

def methodB(self):

print("B class")

class C:

def methodC(self):

print("C class")

class D(A, B, C):

def methodD(self):

print("D class")

d = D()

d.methodA()

d.methodB()

d.methodC()

d.methodD()

Output:

A class

B class

C class

D class

The object of a D class has directly inherited the properties and methods of A, B, and C

classes.

4. Hierarchical Inheritance in Python

In a hierarchical inheritance, a class is inherited by more than one class. It is simple to

understand with a diagram.

Code:

class A:

def methodA(self):

print("A class")

class B(A):

def methodB(self):

print("B class")

class C(A):

def methodC(self):

print("C class")

b = B()

c = C()

b.methodA()

c.methodA()

Output:

A class

A class

5. Hybrid Inheritance in Python

The term Hybrid describes that it is a mixture of more than one type. Hybrid

inheritance is a combination of different types of inheritance.

Code:

class A:

def methodA(self):

print("A class")

class B(A):

def methodB(self):

print("B class")

class C(A):

def methodC(self):

print("C class")

class D(B,C):

def methodD(self):

print("D class")

d = D()

d.methodA()

Output:

A class

● Python Inheritance – super() function

When dealing with inheritance, super() is a very handy function. super() is a proxy

object which is used to refer to the parent object. We can call super() method to access

the properties or methods of the parent class.

Code:

class A:

x=100

def methodA(self):

print("A class")

class B(A):

def methodB(self):

super().methodA()

print("B class")

print(super().x)

b = B()

b.methodB()

Output:

A class

B class

100

● Python Overriding Methods

Method overriding is an important concept in object-oriented programming. Method

overriding allows us to redefine a method by overriding it.

For method overriding, we must satisfy two conditions:

● There should be a parent-child relationship between the classes.

● Inheritance is a must.

● The name of the method and the parameters should be the same in the base

and derived class in order to override it.

What will happen when the method in the base and derived class are the same. Let’s

see an example of this.

Code:

class A:

def method(self):

print("A class")

class B(A):

def method(self):

print("B class")

b = B()

b.method()

Output:

B class

Here, the B class has inherited A class and we have the same function in both classes

method().

Since the name and parameters are the same, the derived class overrides the method

of the base class and when we call the method() the B class method is called. This is

known as method overriding.

● Overloading Methods in Python

If you have some experience with object-oriented programming or other languages

like C/C++ or Java then you might have used method overloading. That is why it is

important to understand that Python doesn’t support method overloading.

Let’s see the example –

Code:

def getDetails():

print("Name: Default")

def getDetails(name):

print("Name:", name)

getDetails("Siri")

getDetails()

Output:

Name: Siri

Traceback (most recent call last):

File

“C:\Users\Techvidvan\AppData\Local\Programs\Python\Python38-32\test.py”, line 8, in

<module>

getDetails()

TypeError: getDetails() missing 1 required positional argument: ‘name’

As you can see, the getDetails(“Siri”) function got executed but the getDetails() was

not executed.

This is because Python overwrites the function with the same name and the latter

function is used.

What is Multiple Inheritance in Python?
Multiple Inheritance is a type of inheritance in which one class can inherit

properties(attributes and methods) of more than one parent classes.

In Multiple inheritance, there is 1 child class inheriting from more than 1 parent

classes.

Here, the child class C inherits from 2 parent classes, A and B.

Let’s code it!

class hulk:

def smash(self):

return "I smash"

class banner:

def speak(self):

return "I've got the brains!"

class smarthulk(hulk, banner):

pass

s1 = smarthulk()

print(s1.smash(), "and", s1.speak())

Output:

I smash and I’ve got the brain!

Regular Expressions in Python:

The term Regular Expression is popularly shortened as regex. A regex is a sequence of

characters that defines a search pattern, used mainly for performing find and replace

operations in search engines and text processors.

Python offers regex capabilities through the re module bundled as a part of the standard

library.

●Raw strings

Different functions in Python's re module use raw string as an argument. A normal

string, when prefixed with 'r' or 'R' becomes a raw string.

Example: Raw String Copy

>>> rawstr = r'Hello! How are you?'
>>> print(rawstr)
Hello! How are you?

The difference between a normal string and a raw string is that the normal string in print()

function translates escape characters (such as \n, \t etc.) if any, while those in a raw string

are not.

Example: String vs Raw String Copy

str1 = "Hello!\nHow are you?"
print("normal string:", str1)
str2 = r"Hello!\nHow are you?"
print("raw string:",str2)

Output
normal string: Hello! How are you? raw string: Hello!\nHow are you?

In the above example, \n inside str1 (normal string) has translated as a newline being

printed in the next line. But, it is printed as \n in str2 - a raw string.

https://www.tutorialsteacher.com/python/python-string
https://www.tutorialsteacher.com/python/print-function

●Meta characters

Some characters carry a special meaning when they appear as a part pattern matching

string. In Windows or Linux DOS commands, we use * and ? - they are similar to meta

characters. Python's re module uses the following characters as meta characters:

. ^ $ * + ? [] \ | ()

When a set of alpha-numeric characters are placed inside square brackets [], the target

string is matched with these characters. A range of characters or individual characters can

be listed in the square bracket. For example:

Pattern Description

[abc] match any of the characters a, b, or c

[a-c] which uses a range to express the same set of characters.

[a-z] match only lowercase letters.

[0-9] match only digits.

The following specific characters carry certain specific meaning.

Pattern Description

\d Matches any decimal digit; this is equivalent to the class [0-9].

\D Matches any non-digit character

\s Matches any whitespace character

\S Matches any non-whitespace character

\w Matches any alphanumeric character

\W Matches any non-alphanumeric character.

. Matches with any single character except newline ‘\n'.

? match 0 or 1 occurrence of the pattern to its left

+ 1 or more occurrences of the pattern to its left

* 0 or more occurrences of the pattern to its left

\b boundary between word and non-word. /B is opposite of /b

[..] Matches any single character in a square bracket

\ It is used for special meaning characters like . to match a period or +
for plus sign.

{n,m} Matches at least n and at most m occurrences of preceding

a| b Matches either a or b

●re.match() function

This function in re module tries to find if the specified pattern is present at the beginning

of the given string.

re.match(pattern, string)

The function returns None, if the given pattern is not in the beginning, and a match

objects if found.

Example: re.match() Copy

from re import match

mystr = "Welcome to TutorialsTeacher"
obj1 = match("We", mystr)
print(obj1)
obj2 = match("teacher", mystr)
print(obj2)

Output
<re.Match object; span=(0, 2), match='We'> None

The match object has start and end properties.

Example: Copy

>>> print("start:", obj.start(), "end:", obj.end())

Output
start: 0 end: 2

The following example demonstrates the use of the range of characters to find out if a

string starts with 'W' and is followed by an alphabet.

Example: match() Copy

from re import match

strings=["Welcome to TutorialsTeacher", "weather
forecast","Winston Churchill", "W.G.Grace","Wonders of
India", "Water park"]

for string in strings:
obj = match("W[a-z]",string)
print(obj)

Output
<re.Match object; span=(0, 2), match='We'> None <re.Match object;
span=(0, 2), match='Wi'> None <re.Match object; span=(0, 2),
match='Wo'> <re.Match object; span=(0, 2), match='Wa'>

●re.search() function

The re.search() function searches for a specified pattern anywhere in the
given string and stops the search on the first occurrence.

Example: re.search() Copy

from re import search

string = "Try to earn while you learn"

obj = search("earn", string)
print(obj)
print(obj.start(), obj.end(), obj.group())
7 11 earn

Output
<re.Match object; span=(7, 11), match='earn'>

This function also returns the Match object with start and end attributes. It also gives a

group of characters of which the pattern is a part of.

●re.findall() Function

As against the search() function, the findall() continues to search for the pattern till the

target string is exhausted. The object returns a list of all occurrences.

Example: re.findall() Copy

from re import findall

string = "Try to earn while you learn"

obj = findall("earn", string)
print(obj)

Output
['earn', 'earn']

This function can be used to get the list of words in a sentence. We shall use \W* pattern

for the purpose. We also check which of the words do not have any vowels in them.

Example: re.findall() Copy
obj = findall(r"\w*", "Fly in the sky.")
print(obj)

for word in obj:
obj= search(r"[aeiou]",word)
if word!='' and obj==None:

print(word)

Output
['Fly', '', 'in', '', 'the', '', 'sky', '', ''] Fly sky

●re.finditer() function

The re.finditer() function returns an iterator object of all matches in the target string. For

each matched group, start and end positions can be obtained by span() attribute.

Example: re.finditer() Copy

from re import finditer

string = "Try to earn while you learn"
it = finditer("earn", string)
for match in it:

print(match.span())

Output
(7, 11) (23, 27)

●re.split() function

The re.split() function works similar to the split() method of str object in Python. It splits

the given string every time a white space is found. In the above example of the findall() to

get all words, the list also contains each occurrence of white space as a word. That is

eliminated by the split() function in re module.

Example: re.split() Copy

from re import split

string = "Flat is better than nested. Sparse is better
than dense."
words = split(r' ', string)
print(words)

Output
['Flat', 'is', 'better', 'than', 'nested.', 'Sparse', 'is', 'better',
'than', 'dense.']

● re.compile() Function

The re.compile() function returns a pattern object which can be repeatedly used in

different regex functions. In the following example, a string 'is' is compiled to get a

pattern object and is subjected to the search() method.

Example:
re.compile() Copy
from re import *

pattern = compile(r'[aeiou]')

https://www.tutorialsteacher.com/python/string-split

string = "Flat is better than nested. Sparse is better than dense."
words = split(r' ', string)
for word in words:

print(word, pattern.match(word))

Output
Flat None is <re.Match object; span=(0, 1), match='i'> better None than
None nested. None Sparse None is <re.Match object; span=(0, 1),
match='i'> better None than None dense. None

The same pattern object can be reused in searching for words having vowels, as shown

below.

Example:
search() Copy

for word in words:
print(word, pattern.search(word))

Output
Flat <re.Match object; span=(2, 3), match='a'> is <re.Match object; span=(0,
1), match='i'> better <re.Match object; span=(1, 2), match='e'> than
<re.Match object; span=(2, 3), match='a'> nested. <re.Match object; span=(1,
2), match='e'> Sparse <re.Match object; span=(2, 3), match='a'> is <re.Match
object; span=(0, 1), match='i'> better <re.Match object; span=(1, 2),
match='e'> than <re.Match object; span=(2, 3), match='a'> dense. <re.Match
object; span=(1, 2), match='e'>

● Quantifiers in Python:

A quantifier has the form {m,n} where m and n are the minimum and maximum

times the expression to which the quantifier applies must match. We can use

quantifiers to specify the number of occurrences to match.

