Name of the Faculty	:	
Discipline	:	Civil Engg.
Semester	:	5th
Subject	:	Reinforced Cement Concrete
Lesson Plan Duration	:	15 weeks
** Work Load (Lacture / Dr	actical) n	or Woolz (In Hours), Locturo-0

** Work Load (Lecture/ Practical) per Week (In Hours): Lecture-05

Week	ek Theory			
	Lecture Topic			
	Day	(Including assignment/test)		
	1	Concept of reinforced cement concrete		
1 st	2	Reinforcement materials		
	3	Properties of mild steel and HYSD steel		
	4	Loading on structures as per IS: 875		
	5	Discussion and oral test of previous topics		
2nd	6	Introduction about methods of R.C.C. Design		
	7	Working stress method		
	8	Limit state method		
	9	Differentiate between above methods		
	10	Shear and development length		
	11	Shear as per IS:456:2000 by working stress method		
	12	Shear strength of concrete		
3rd	13	Concept of maximum shear stress		
	14	Shear reinforcement		
	15	Revision of above topics		
	16	Introduction of singly reinforced beam		
	17	Stress strain curve and neutral axis		
4th	18	Balanced, Under reinforced and over reinforced beam		
	19	Moment of resistance for singly reinforced beam		
	20	Design of singly reinforced beam		
	21	Test of above covered syllabus		
	22	Concept of limit state method		
5th	23	Assumptions made in limit state of collapse		
	24	Partial factor of safety for loads and materials		
	25	Design loads, stress block, parameters		
	26	Singly reinforced beam		
	27	Theory of singly reinforced beam		
6 th	28	Design of singly reinforced beam by limit state method		
	29	Numerical practice		
	30	Doubts and numerical practice		

7th	31	Doubly reinforced beam		
	32	Theory of doubly reinforced beam		
	33	Design of doubly reinforced beam by limit state method		
	34	Numerical problems		
	35	Doubly reinforced beam design practice		
	36	Introduction of T beam		
	37	Inverted T beam, isolated T beam and L beam		
8 th	38	Revision		
	39	Introduction of one way slab		
	40	Theory and design of simply supported one way slab		
	41	Design of simply supported one way slab using limit state method		
	42	Sketch detail of design of one way slab		
9th	43	Numerical problems		
	44	Practice of numerical problems and doubts		
	45	Practice of numerical problems		
	46	Test of above covered syllabus		
	47	Concept of two way slab		
10+h	48	Theory and design of two way slab with corner free to lift		
1001	49	Numerical practice		
	50	Design of two way slab with no provision for torsional reinforcement by limit state		
		method		
	51	Sketches of two way slab showing reinforcement detail		
	52	Axially loaded column		
11th	53	Definition and classification of columns		
	54	Effective length of column		
	55	Specifications for longitudinal and lateral reinforcement		
	56	Design of axially loaded square column		
	57	Rectangular short column		
12th	58	Circular short column by LSM		
	59	Sketches of different columns showing reinforcement detail		
	60	Numerical practice		
	61	Numerical practice		
	62	Concept of pre-stressed concrete		
13th	63	Introduction of different prestressing methods		
	64	Pre tensioning		
	65	Post tensioning		
	66	Advantages of prestressing		
11+h	67	Disadvantages of prestressing		
14th	68	Losses in prestress		
	69	Revision of prestressed concrete		

	70	Tutorial for doubts
15th	71	Test
	72	Tutorial for numerical problems
	73	Tutorial for numerical problems
	74	Tutorial for numerical problems
	75	Revision of syllabus