Lesson Plan

Name of Faculty	:	Harjit Chawla
Discipline	:	Mechanical Engg.
Semester	:	3rd
Subject	:	Thermodynamics-I

Lesson Plan Duration15 weeks (15, sept, 2022 to 16 January, 2023)Work Load (Lecture/Practical) per week (in hours): Lectures-03, Practicals-02

Week	Theory		Practical
	Lecture day	Topic(including assignment/test)	Торіс
1 st	1 st	Fundamental Concepts :- Thermodynamic state and system, boundary, surrounding, universe	Determination of temperature by 1.1 Thermocouple 1.2 Pyrometer
	2 nd	thermodynamic systems – closed, open, isolated, adiabatic, homogeneous and heterogeneous, macroscopic and microscopic	1.3 Infrared thermometer
	3 rd	properties of system – intensive and extensive, thermodynamic equilibrium, quasi – static process, reversible and irreversible processes	
2 nd	1 st	Zeroth law of thermodynamics, definition of properties like pressure, volume, temperature, enthalpy and internal energy	Revision.
	2 nd	Laws of Perfect Gases :- Definition of gases, explanation of perfect gas laws – Boyle's law, Charle's law, Avagadro's law	
	3 rd	Regnault's law, Universal gas constant, Characteristic gas constants and its derivation	
3 rd	1 st	Specific heat at constant pressure, specific heat at constant volume of a gas, derivation of an expression for specific heats with characteristics	Demonstration of mountings and accessories on a boiler.
	2 nd	Simple numerical problems on gas equation.	
	3 rd	Thermodynamic Processes :- Types of thermodynamic processes – isochoric, isobaric	
4 th	1 st	isothermal, adiabatic, isentropic	Revision.
	2 nd	polytropic and throttling processes,	-

		equations representing the processes	
	3 rd	Derivation of work done, change in internal energy	
5 th	1 st	change in entropy, rate of heat transfer for the above processes	Study the working of Lancashire boiler and Nestler boiler.
	2 nd	Laws of Thermodynamics :- Laws of conservation of energy, first law of thermodynamics (Joule's experiment) and its limitations	
	3 rd	Application of first law of thermodynamics to Non-flow systems – Constant volume	
6 th	1 st	Constant pressure, Adiabatic and polytropic processes	Revision.
	2 nd	steady flow energy equation, Application of steady flow energy equation for turbines, pump	
	3 rd	boilers, compressors, nozzles, and evaporators	
7 th	1 st	Heat source and sink, statements of second laws of thermodynamics: Kelvin Planck's statement	Study of working of high pressure boiler.
	2 nd	Classius statement, equivalency of statements	
	3 rd	Perpetual motion Machine of first kind, second kind, Carnot engine	
8 th	1 st	Introduction of third law of thermodynamics, concept of irreversibility and concept of entropy	Revision
	2 nd	Ideal and Real Gases :- Concept of ideal gas, enthalpy	
	3 rd	specific heat capacities of an ideal gas	
9 th	1 st	P - V - T surface of an ideal gas, triple point	Study of boilers .
	2 nd	real gases, Vander-Wall's equation	
	3 rd	Properties of Steam :- Formation of steam and related terms, thermodynamic properties of steam	
10 th	1 st	steam tables, sensible heat, latent heat, internal energy of steam, entropy of water, entropy of steam	Revision
	2 nd	T- S diagrams, Mollier diagram (H – S Chart), Expansion of steam, Hyperbolic	
	3 rd	reversible adiabatic and throttling processes, determination of quality of	

		steam (dryness fraction)	
11 th	1 st	Steam Generators :- Uses of steam, classification of boilers	Determination of Dryness fraction of steam using calorimeter.
	2 nd	function of various boiler mounting and accessories	
	3 rd	comparison of fire tube and water tube boilers	
12 th	1 st	Construction and working of Lancashire boiler	Revision
	2 nd	Nestler boiler, Babcock & Wilcox Boiler. Introduction to modern boilers.	
	3 rd	Air Standard Cycles :- Meaning of air standard cycle – its use, condition of reversibility of a cycle	
13 th	1 st	Description of Carnot cycle Otto cycle,	Demonstrate the working of air compressor
	2 nd	Diesel cycle, simple problems on efficiency for different cycles.	
	3 rd	Comparison of Otto, Diesel cycles for same compression ratio, same peak pressure developed and same heat input	
14 th	1 st	Reasons for highest efficiency of Carnot cycle and all other cycles working between same temperature limits	Revision
	2 nd	Air Compressors :- Functions of air compressor – uses of compressed air, type of air compressors	
	3 rd	Single stage reciprocating air compressor, its construction and working, representation of processes involved on P – V diagram, calculation of work done.	
15 th	1 st	Multistage compressors – advantages over single stage compressors, use of air cooler, condition of minimum work in two stage compressor (without proof), simple problems	Revision.
	2 nd	Rotary compressors – types, working and construction of centrifugal compressor	
	3 rd	Axial flow compressor, vane type compressor	